If it's not what You are looking for type in the equation solver your own equation and let us solve it.
f^2+9f-2=0
a = 1; b = 9; c = -2;
Δ = b2-4ac
Δ = 92-4·1·(-2)
Δ = 89
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$f_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$f_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$f_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(9)-\sqrt{89}}{2*1}=\frac{-9-\sqrt{89}}{2} $$f_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(9)+\sqrt{89}}{2*1}=\frac{-9+\sqrt{89}}{2} $
| 0=2n-n2+3 | | 90=x+136 | | r^2+3r+6=4 | | 5=n-4 | | 5n-3=2(n-8)+3n | | N^2-20n-65=4 | | -2+(m/4)=-7 | | 6u+24=14u | | (3w-21)(21w-3)=0 | | 139-u=184 | | 5(2c+7)-3c=79c+5) | | 9x-6=-30 | | N^2-6n-31=-4 | | x-5=5/6x+15 | | -7c+7=-49 | | -24=x-13 | | 32=b+15 | | -(6/7)=-(x/84) | | 8z-10=6z-22 | | k=-9k+5 | | 5(3x+4)=-5 | | x+136=x+20 | | 3.15*x=7 | | y=−7+80 | | -4=-15+r | | -11p=66 | | K^2-16k+70=10 | | -12=p/6 | | 8b+5=37 | | X+2-0.5=1+0.5x1 | | X+2-0.5=1+0.5x(1 | | 2x=-3x+2 |